7)研究業績
1) Release of excitatory amino acids from cultured hippocampal astrocytes induced by a hypoxic-hypoglycemic stimulation.
Ogata T., Nakamura Y., Shibata T. and Kataoka K.
Journal of Neurochemistry
1992, vol. 58, No. 5, pp. 1957-1959
 
2) Steroid hormones protect spinal cord neurons from glutamate toxicity.
Ogata T., Nakamura Y., Tsuji K., Shibata T. and Kataoka K.
Neuroscience
1993, vol. 55, No. 2, pp. 445-449
 
3) Adenosine enhances intracellular Ca2+ mobilization in conjunction with metabotropic glutamate receptor activation by t-ACPD in cultured hippocampal satrocytes.
Ogata T., Nakamura Y., Tsuji K., Shibata T., Kataoka K. and Schubert P.
Neuroscience Letters
1994, vol. 170, pp. 5-8
 
4) A marked increase in intracellular Ca2+ concentration induced by acromelic acid in cultured rat spinal neurons.
Ogata T., Nakamura Y., Tsuji K., Shibata T., Kataoka K., Ishida M. and Shinozaki H.
Neuropharmacology
1994, vol. 33, No. 9, pp. 1079-1085
 
5) Rapid decrease in ATP content without recovery phase during glutamate-induced cell death in cultured spinal neurons.
Tsuji K., Nakamura Y., Ogata T., Shibata T.and Kataoka K.
Brain Research
1994, vol. 662, pp. 289-292
 
6) Neurotoxicity of acromelic acid in cultured neurins from rat spinal cord.
Tsuji K., Nakamura Y., Ogata T., Shibata T., Kataoka K, Ishida M. and Shinozaki H.
Neuroscience
1995, vol. 68, No. 2, pp. 585-591
 
7) A possible mechanism for the hypoxia-hypoglycemia-induced release of excitatory amino acids from cultured hippocampal astrocytes.
Ogata T., Nakamura Y., Tsuji K., Shibata T. and Kataoka K.
Neurochemical Research
1995, vol. 20, No.6, pp. 737-743
 
8) Transient increase of cyclic AMP induced by glutamate in cultured neurons from rat spinal cord.
Tsuji K., Nakamura Y., Ogata T., Shibata T.and Kataoka K.
Journal of Neurochemistry
1995, vol. 65, No. 4, pp. 1816-1822
 
9) Role of aspartate in ischemic spinal cord damage
Ogata T., Nakamura Y., Tsuji K., Okumura H., Kataoka K. and Shibata T.
Journal of Orthopaedic Research
1996, vol. 14, No. 3, pp. 504-510
 
10) Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca2+-related A1/A2 adenosine receptor cooperation.
Ogata T., Nakamura Y.and Schubert P.
European Journal of Neuroscience
1996, vol. 8, pp. 1124-1131
 
11) Modulation of glial cell signalling by adenosine and pharmacological reinforcement: a neuroprotective strategy?
Schubert P., Ogata T., Ferroni S., McRae A., Nakamura Y.and Rudolphi K.
Molecular and Chemical Neuropharmacology
1996, vol. 28, pp. 185-190
 
12) Ischemic neuronal damage; How does mild hypothermia modulate it?
Kataoka K., Mitani A., Yanase H., Zhang L., Higashihara M., Ogata T., Tsuji K., Nakamura Y., McRae A., Ogita K. and Yoneda Y.
Molecular and Chemical Neuropharmacology
1996, vol. 28, pp. 191-195
 
13) Programmed cell death in rat microglia is controlled by extracellular adenosine.
Ogata T. and Schubert P.
Neuroscience Letters
1996, vol. 218, pp. 91-94
 
14) Postischemic glial responces and amyloid accumulation are modified by propentofylline: a neuroprotective pharmacon for Alzheimer's disease?
McRae A., Schubert P., Ogata T., Nakamura Y., Ling E.A., Kaur C. and Rudolphi K.
In: "Biology, Diagnosis and Therapeutics" (K. Iqbal, B. Winblad, T. Nishimura, M. Takeda and H.M. Wisniewski, Eds.) John Wiley and Sons Ltd. New Jersey
1997, pp. 759-767
 
15) Protective mechanisms of adenosine in neurons and glial cells.
Schubert P., Ogata T., Marchini C., Ferroni S. and Rudolphi K.
In: "Neuroprotective Agents" (W. Slikker and B. Trembly, Eds.) Ann. N.Y.Acad.Sci.
1997, vol. 825,  pp. 1-10
 
16) Inhibitory effect of adenosine agonists and propentofylline on the proliferation and transformation of cultured microglia.
Nakamura Y., Si Q.S., Kataoka K., Ogata T. and Schubert P.
In: "The Role of Adenosine in the Nervous System" (Y. Okada, Ed.), pp.97-102, Elsevier, Amsterdam, New York, Tokyo 1997.
 
17) Support of homeostatic glial cell signaling: a novel therapeutic approach by propentofylline.
Schubert P., Ogata T., Rudolphi K., Marchini C., McRae A. and Ferroni S.
In: "Cerebrovascular Pathology in Alzheimer's disease" (J.C.de la Torre and V. Hachinski, Eds.) Ann. N.Y. Acad.Sci.
1997, vol. 826,  pp. 337-347
 
18) Homeostatic effects of adenosine on potentially neurotoxic glial cell activation.
Schubert P., Ogata T., Marchini C. and Kataoka K.
In "Neurochemistry" (Teelken and Korf, Ed.), pp.83-90, Plenum Press, New York, 1997.
 
19) Pathological immuno-reactions of glial cells in Alzheimer's disease and possible sites of interference.
Schubert P., Ogata T., Miyazaki H., Marchini C., Ferroni S. and Rudolphi K.
Journal of Neurotransmission
1998, vol.54, pp.167-174
 
20) Differential regulation of microglial activation by propentofylline via cAMP signaling.
Si Q., Nakamura Y.,  Ogata T., Kataoka K. and Schubert P.
Brain Research
1998, vol. 812, pp. 97-104
 
21) Substance P regulates the function of rabbit cultured osteoclast; increase of intracellular free calcium concentration and enhancement of bone resorption.
Mori T., Ogata T., Okumura H., Shibata T., Nakamura Y. and Kataoka K.
Biocheminal and Biophysical Research Communications
1999, vol. 262, pp.418-422
 
22) Mild hypothermia amelioration of damage during rat spinal cord injury: inhibition of pathological microglial proliferation and improvement of hind-limb motor function.
Ogata T., Morino T., Takeba J., Matsuda Y., Okumura H., Shibata T., Schubert P. and Kataoka K.
In "Brain Hypothermia" (N. Hayashi, Ed.), pp.47-54, Springer-Verlag, Tokyo, 2000.
 
23) Cascading glia reactions: a common pathomechanism and its differentiatedcontrol by cyclic nucleotide signaling.
Schubert P., Morino T., Miyazaki H., Ogata T., Nakamura Y., Marchini C. and Ferroni S.
Ann. N.Y.Acad.Sci.
2000, vol. 903, pp. 24-34
 
24) Glia-related pathomechanisms in Alzheimer's disease: a therapeutic target?
Schubert P., Ogata T., Marchini C. and Ferroni S.
Mechanisms of Ageing and Development
2001, vol. 123, pp. 47?57
 
25) Recovery of deficient cholinergic calcium signaling by adenosine in cultured rat cortical astrocytes.
Ferroni S., Marchini C., Ogata T. and Schubert P.
J. Neurosci. Res.
2002, vol. 68, pp 615-621
 
26) Prostaglandin E1 analog inhibits the microglia function: suppression of lipopolysaccharide-induced nitric oxide and TNF-a release 
Chuai M., Ogata T., Morino T., Okumura H., Yamamoto H. and Schubert P.
J Orthopedic Res.
2002, vol. 20, pp 1246-1252
 
27) Serotonergic signaling inhibits hyperalgesia induced by spinal cord damage
Horiuchi H., Ogata T., Morino T., Takeba, J., Yamamoto H.
Brain Res.
2003, vol 963, pp 312-320
 
28) Delayed neuronal damage related to microglia proliferation after mild spinal cord compression injury
Morino, T., Ogata, T. Horiuchi, H. Takeba, J., Okumura, H., Miyazaki, T. and Yamamoto, H.
Neuroscience Research
2003, vol. 46, pp 309-318
 
29) Adenosine triphosphate inhibits cytokine release from lipopolysaccharide-activated microglia via P2y receptors
Ogata, T., Chuai, M., Morino, T., Yamamoto, H., Nakamura Y., Schubert, P.
Brain Research
2003, vol. 981, pp 174-183
 
30) Continuous intrathecal infusion of SB203580, a selective inhibitor of p38 mitogen-activated protein kinase, reduces the damage of hind-limb function after thoracic spinal cord injury in rat.
Horiuchi, H., Ogata, T., Morino, T., Chuai, M., Yamamoto, H.
Neuroscience Research
2003, vol. 47, pp. 209-217

31) Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.

Hamamoto Y, Ogata T, Morino T, Hino M, and Yamamoto H

Spine

2007,
vol. 32 (18), pp. 1955-1962