1) Release of excitatory amino acids from cultured hippocampal astrocytes induced by a hypoxic-hypoglycemic stimulation.

Ogata T., Nakamura Y., Shibata T. and Kataoka K.

Journal of Neurochemistry

1992, vol. 58, No. 5, pp. 1957-1959

 

2) Steroid hormones protect spinal cord neurons from glutamate toxicity.

Ogata T., Nakamura Y., Tsuji K., Shibata T. and Kataoka K.

Neuroscience

1993, vol. 55, No. 2, pp. 445-449

 

3) Adenosine enhances intracellular Ca2+ mobilization in conjunction with metabotropic glutamate receptor activation by t-ACPD in cultured hippocampal satrocytes.

Ogata T., Nakamura Y., Tsuji K., Shibata T., Kataoka K. and Schubert P.

Neuroscience Letters

1994, vol. 170, pp. 5-8

 

4) A marked increase in intracellular Ca2+ concentration induced by acromelic acid in cultured rat spinal neurons.

Ogata T., Nakamura Y., Tsuji K., Shibata T., Kataoka K., Ishida M. and Shinozaki H.

Neuropharmacology

1994, vol. 33, No. 9, pp. 1079-1085

 

5) Rapid decrease in ATP content without recovery phase during glutamate-induced cell death in cultured spinal neurons.

Tsuji K., Nakamura Y., Ogata T., Shibata T.and Kataoka K.

Brain Research

1994, vol. 662, pp. 289-292

 

6) Neurotoxicity of acromelic acid in cultured neurins from rat spinal cord.

Tsuji K., Nakamura Y., Ogata T., Shibata T., Kataoka K, Ishida M. and Shinozaki H.

Neuroscience

1995, vol. 68, No. 2, pp. 585-591

 

7) A possible mechanism for the hypoxia-hypoglycemia-induced release of excitatory amino acids from cultured hippocampal astrocytes.

Ogata T., Nakamura Y., Tsuji K., Shibata T. and Kataoka K.

Neurochemical Research

1995, vol. 20, No.6, pp. 737-743

 

8) Transient increase of cyclic AMP induced by glutamate in cultured neurons from rat spinal cord.

Tsuji K., Nakamura Y., Ogata T., Shibata T.and Kataoka K.

Journal of Neurochemistry

1995, vol. 65, No. 4, pp. 1816-1822

 

9) Role of aspartate in ischemic spinal cord damage

Ogata T., Nakamura Y., Tsuji K., Okumura H., Kataoka K. and Shibata T.

Journal of Orthopaedic Research

1996, vol. 14, No. 3, pp. 504-510

 

10) Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca2+-related A1/A2 adenosine receptor cooperation.

Ogata T., Nakamura Y.and Schubert P.

European Journal of Neuroscience

1996, vol. 8, pp. 1124-1131

 

11) Modulation of glial cell signalling by adenosine and pharmacological reinforcement: a neuroprotective strategy?

Schubert P., Ogata T., Ferroni S., McRae A., Nakamura Y.and Rudolphi K.

Molecular and Chemical Neuropharmacology

1996, vol. 28, pp. 185-190

 

12) Ischemic neuronal damage; How does mild hypothermia modulate it?

Kataoka K., Mitani A., Yanase H., Zhang L., Higashihara M., Ogata T., Tsuji K., Nakamura Y., McRae A., Ogita K. and Yoneda Y.

Molecular and Chemical Neuropharmacology

1996, vol. 28, pp. 191-195

 

13) Programmed cell death in rat microglia is controlled by extracellular adenosine.

Ogata T. and Schubert P.

Neuroscience Letters

1996, vol. 218, pp. 91-94

 

14) Post-ischaemic glial responses and amyloid accumulation are modified by propentofylline: a neuroprotective pharmacon for Alzheimer's disease?

McRae A., Schubert P., Ogata T., Nakamura Y., Ling E.A., Kaur C. and Rudolphi K.

In: "Biology, Diagnosis and Therapeutics" (K. Iqbal, B. Winblad, T. Nishimura, M. Takeda and H.M. Wisniewski, Eds.) John Wiley and Sons Ltd. New Jersey

1997, pp. 759-767

 

15) Protective mechanisms of adenosine in neurons and glial cells.

Schubert P., Ogata T., Marchini C., Ferroni S. and Rudolphi K.

In: "Neuroprotective Agents" (W. Slikker and B. Trembly, Eds.) Ann. N.Y.Acad.Sci.

1997, vol. 825,  pp. 1-10

 

16) Inhibitory effect of adenosine agonists and propentofylline on the proliferation and transformation of cultured microglia.

Nakamura Y., Si Q.S., Kataoka K., Ogata T. and Schubert P.

In: "The Role of Adenosine in the Nervous System" (Y. Okada, Ed.), pp.97-102, Elsevier, Amsterdam, New York, Tokyo 1997.

 

17) Support of homeostatic glial cell signaling: a novel therapeutic approach by propentofylline.

Schubert P., Ogata T., Rudolphi K., Marchini C., McRae A. and Ferroni S.

In: "Cerebrovascular Pathology in Alzheimer's disease" (J.C.de la Torre and V. Hachinski, Eds.) Ann. N.Y. Acad.Sci.

1997, vol. 826,  pp. 337-347

 

18) Homeostatic effects of adenosine on potentially neurotoxic glial cell activation.

Schubert P., Ogata T., Marchini C. and Kataoka K.

In "Neurochemistry" (Teelken and Korf, Ed.), pp.83-90, Plenum Press, New York, 1997.

 

19) Pathological immuno-reactions of glial cells in Alzheimer's disease and possible sites of interference.

Schubert P., Ogata T., Miyazaki H., Marchini C., Ferroni S. and Rudolphi K.

Journal of Neurotransmission

1998, vol.54, pp.167-174

 

20) Differential regulation of microglial activation by propentofylline via cAMP signaling.

Si Q., Nakamura Y., Ogata T., Kataoka K. and Schubert P.

Brain Research

1998, vol. 812, pp. 97-104

 

21) Substance P regulates the function of rabbit cultured osteoclast; increase of intracellular free calcium concentration and enhancement of bone resorption.

Mori T., Ogata T., Okumura H., Shibata T., Nakamura Y. and Kataoka K.

Biocheminal and Biophysical Research Communications

1999, vol. 262, pp.418-422

 

22) Mild hypothermia amelioration of damage during rat spinal cord injury: inhibition of pathological microglial proliferation and improvement of hind-limb motor function.

Ogata T., Morino T., Takeba J., Matsuda Y., Okumura H., Shibata T., Schubert P. and Kataoka K.

In "Brain Hypothermia" (N. Hayashi, Ed.), pp.47-54, Springer-Verlag, Tokyo, 2000.

 

23) Cascading glia reactions: a common pathomechanism and its differentiatedcontrol by cyclic nucleotide signaling.

Schubert P., Morino T., Miyazaki H., Ogata T., Nakamura Y., Marchini C. and Ferroni S.

Ann. N.Y.Acad.Sci.

2000, vol. 903, pp. 24-34

 

24) Glia-related pathomechanisms in Alzheimer's disease: a therapeutic target?

Schubert P., Ogata T., Marchini C. and Ferroni S.

Mechanisms of Ageing and Development

2001, vol. 123, pp. 47–57

 

25) Recovery of deficient cholinergic calcium signaling by adenosine in cultured rat cortical astrocytes.

Ferroni S., Marchini C., Ogata T. and Schubert P.

J. Neurosci. Res.

2002, vol. 68, pp 615-621

 

26) Prostaglandin E1 analog inhibits the microglia function: suppression of lipopolysaccharide-induced nitric oxide and TNF-a release 

Chuai M., Ogata T., Morino T., Okumura H., Yamamoto H. and Schubert P.

J Orthopedic Res.

2002, vol. 20, pp 1246-1252

 

27) Serotonergic signaling inhibits hyperalgesia induced by spinal cord damage

Horiuchi H., Ogata T., Morino T., Takeba, J., Yamamoto H.

Brain Res.

2003, vol 963, pp 312-320

 

28) Delayed neuronal damage related to microglia proliferation after mild spinal cord compression injury

Morino, T., Ogata, T. Horiuchi, H. Takeba, J., Okumura, H., Miyazaki, T. and Yamamoto, H.

Neuroscience Research

2003, vol. 46, pp 309-318

 

29) Adenosine triphosphate inhibits cytokine release from lipopolysaccharide-activated microglia via P2y receptors

Ogata, T., Chuai, M., Morino, T., Yamamoto, H., Nakamura Y., Schubert, P.

Brain Research

2003, vol. 981, pp 174-183

 

30) Continuous intrathecal infusion of SB203580, a selective inhibitor of p38 mitogen-activated protein kinase, reduces the damage of hind-limb function after thoracic spinal cord injury in rat.

Horiuchi, H., Ogata, T., Morino, T., Chuai, M., Yamamoto, H.

Neuroscience Research

2003, vol. 47, pp. 209-217

 

31) A simple bone cyst located in the pedicle of the lumbar vertebra; A case report.

Ogata, T., Matsuda, Y., Hino, M., Kawatani, Y., Sogabe, H., Yamamoto, H.

J. Spinal Disord. Tech.

2004, vol. 17 (4), pp. 339-342

 

32) Intraosseous gouty tophus of the talus, treated by total curettage and calcium phosphate cement filling: a case report.

Morino, T., Fujita, M., Kariyama, K., Yamakawa, H., Ogata, T., Yamamoto, H.

Foot and Ankle International

2007, vol. 28 (1), pp. 126-128

 

33) Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.

Hamamoto Y, Ogata T, Morino T, Hino M, and Yamamoto H

Spine 2007, vol. 32 (18), pp. 1955-1962

 

34) A periosteal chondroma located in lumbar spinal canal: A case report

Ogata T, Miyazaki T, Morino T, Nose M, Yamamoto H.

Journal of Neurosurgery: Spine 2007, vol. 7(4), pp. 454-458

 

35) Microglia inhibition is a target of mild hypothermic treatment after the spinal cord injury.

Morino T, Ogata T, Takeba J, Yamamoto H.

Spinal Cord. 2008;46(6):425-31.

 

36) Resolution of intraspinal retro-odontoid cyst associated with os odontoideum following posterior fixation.

Ogata T, Kawatani Y, Morino T, and Yamamoto H

J. Spinal Disord. Tech. 2009; 22(1): 58-61

 

37) Intrathecal transplantation of autologous macrophages genetically modified to secrete proenkephalin ameliorated hyperalgesia and allodynia following peripheral nerve injury in rats.

Hino M, Ogata T, Morino T, Horiuchi H, Yamamoto H.

Neuroscience Research 2009; 64:56-62

 

38) Prostaglandin E1 analog increases spinal cord blood flow at the point of compression during and after experimental spinal cord injury.

Hamamoto Y, Ogata T, Morino T, Hino M, Yamamoto H

Spinal Cord. 2010; 48: 149-153

 

39) Adenosine A1 receptor agonists reduce hyperalgesia after spinal cord injury in rats.

Horiuchi H, Ogata T, Morino T, Yamamoto H

Spinal Cord. 2010, in press

 

40) Pharmacological shift of the ambiguous nitric oxide (NO) action from neurotoxicity to cyclic GMP-mediated protection

Kohgami S, Ogata T, Morino T, Yamamoto H, Schubert P

Neurological Res. 2010, in press

 

41) 3-D MRI/CT fusion imaging of the lumbar spine.

Yamanaka Y, Kamogawa J, Katagi R, Kodama K, Misaki H, Kamada K, Okuda S, Morino T, Ogata T, Yamamoto H.

Skeletal Radiol. 2010; 39: 285-288.

 
活動報告トップへ戻る