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Feasibility of Bone Mineral Density and Bone
Microarchitecture Assessment Using Deep Learning With a

Convolutional Neural Network

Kazuki Yoshida, MD, PhD,* Yuki Tanabe, MD, PhD,* Hikaru Nishiyama, MS,* Takuya Matsuda, MD, PhD,†
Hidetaka Toritani, MS,§ Takuya Kitamura, MD,* Shinichiro Sakai, MD,‡ Kunihiko Watamori, MD, PhD,‡

Masaki Takao, MD, PhD,‡ Eizen Kimura, BM, PhD,† and Teruhito Kido, MD, PhD*
Objectives:We evaluated the feasibility of using deep learning with a
convolutional neural network for predicting bone mineral density (BMD)
and bone microarchitecture from conventional computed tomography (CT)
images acquired by multivendor scanners.
Methods: We enrolled 402 patients who underwent noncontrast CT ex-
aminations, including L1–L4 vertebrae, and dual-energy x-ray absorptiom-
etry (DXA) examination. Among these, 280 patients (3360 sagittal verte-
bral images), 70 patients (280 sagittal vertebral images), and 52 patients
(208 sagittal vertebral images) were assigned to the training data set for deep
learning model development, the validation, and the test data set, respectively.
Bone mineral density and the trabecular bone score (TBS), an index of bone
microarchitecture, were assessed byDXA.BMDDL and TBSDLwere predicted
by deep learningwith a convolutional neural network (ResNet50). Pearson cor-
relation tests assessed the correlation between BMDDL and BMD, and TBSDL
and TBS. The diagnostic performance of BMDDL for osteopenia/osteoporosis
and that of TBSDL for bonemicroarchitecture impairmentwere evaluated using
receiver operating characteristic curve analysis.
Results: BMDDL andBMDcorrelated strongly (r = 0.81,P < 0.01), whereas
TBSDL andTBS correlatedmoderately (r = 0.54,P< 0.01). The sensitivity and
specificity of BMDDL for identifying osteopenia or osteoporosiswere 93% and
90%, and 100% and 94%, respectively. The sensitivity and specificity of
TBSDL for identifying patients with bone microarchitecture impairment
were 73% for all values.
Conclusions: The BMDDL and TBSDL derived from conventional CT
images could identify patients who should undergo DXA, which could
be a gatekeeper tool for detecting latent osteoporosis/osteopenia or bone
microarchitecture impairment.
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O steoporosis is a common and treatable skeletal disease caused
by decreased bone mineral density (BMD) and bone micro-

architecture impairment.1 Osteoporosis increases the probability of
fragility fractures and themortality rate. Therefore, an early diagnosis
of osteoporosis is important to prevent fragility fractures.2 Current
guidelines recommend BMD assessment by using dual-energy
x-ray absorptiometry (DXA) to diagnose osteoporosis, as BMD is as-
sociated with approximately 70% bone strength.3,4 However, more
than half of fragility fractures occur despite normal BMD.3–5 Bone
microarchitecture is another important factor in fragility fractures.
The trabecular bone score (TBS) indicates bone microarchitecture
and is derived from assessing DXA images and performing texture
analysis.3,6,7 A lower TBS increases the probability of fragility frac-
tures, independent of BMD.8,9 Recent guidelines state that the TBS
can be applied to the risk assessment of fragility fractures.3

There are many undetected patients with osteoporosis in the
real world, as DXA is not often performed for asymptomatic pa-
tients.1 Computed tomography (CT) has been widely used in clinical
practice, and it might be applied as a gatekeeper tool for detecting la-
tent osteoporosis. A previous report showed that CT attenuation (as
measured in Hounsfield units [HUs]) correlated moderately with
BMD.10 Recently, deep learning has been applied to assess osteo-
porosis.11,12 However, the usefulness of deep learning for bone
microarchitecture assessment is not clear. We, therefore, aimed
to investigate the feasibility of predicting BMD and TBS from ab-
dominal CT images by using deep learning with a convolutional
neural network (CNN).
MATERIALS AND METHODS

Study Population
This study was a retrospective cross-sectional study approved

by the local institutional review board (approval number: 2105008).
The need for informed consent was waived. We retrospectively
identified the study patients between July 2016 and March 2021
(age≥20 years).We included the patientswho underwent CTexam-
ination (120 kVp), including the lumbar spine (L1–L4), and lumbar
DXA examination within 1 year. We determined the acceptable
time interval between DXA and CT in inclusion criteria according
to the previous report.1,12 We excluded patients with a lumbar com-
pression fracture, severe scoliosis, severe spondylosis, previous
lumbar spine surgery, and enhanced CT to avoid the change in
the CT attenuation of the lumbar vertebra.12 Four hundred two pa-
tients who matched the criteria were enrolled in this study. Among
www.jcat.org 467
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TABLE 1. Patient Characteristics

Training + Validation, n = 350 Test, n = 52 P

Age, y 63 (49–71) 65 (51–74) 0.50
Men 80 (23%) 11 (21%) 0.78
Body mass index, kg/m2 21.9 (19.6–24.9) 21.9 (19.5–25.9) 0.64
Time interval between the DXA and CT, d 49 (9–121) 87 (14–185) 0.12
CT vendor 0.32
Canon Medical Systems 155 (44%) 18 (35%)
Philips Healthcare 81 (23%) 12 (23%)
Siemens Healthineers 114 (33%) 22 (42%)

Continuous data are presented as the median (25th–75th percentile) and assessed by Wilcoxon signed rank test.

Number (%) of subjects are assessed by the χ2 test (in the case of 3 groups, using the Bonferroni correction).

*Statistical significance was determined at P < 0.05 between the training + validation data set and test data set.

TABLE 2. Indications for CT Examination

No. patients (%)

Orthopedic disease 111 (28%)
Autoimmune disease 110 (27%)
Gastrointestinal disease 78 (19%)
Metabolic and endocrine disease 27 (7%)
Breast disease 24 (6%)
Neuromuscular disease 14 (3%)
Lung disease 12 (3%)
Hematology and infection disease 8 (2%)
Nephrology and urology disease 6 (1%)
Gynecology disease 6 (1%)
Others 6 (1%)

Data are presented as number (%) of subjects.
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these patients, case numbers (1–402) were randomly assigned to the
consecutive patient data set. We divided into 1–350 as the training
and validation data set (350 patients) and 351–402 as the test data
set (52 patients, 208 CT images). In each fold of 5-fold cross-
validation, 280 patients (3360 CT images) were assigned to the
training data set for model development, and 70 patients (280 CT
images) were assigned to the validation data set. Therewas no over-
lap between the training data set and the test data set. Patient char-
acteristics and information about the patient's indications for imag-
ing are shown in Table 1 and 2.

CT Acquisition
Computed tomography images were acquired by a 320-row

multidetector row volume CT scanner (Aquilion ONE; Canon Med-
ical Systems,Otawara, Japan), a third-generation dual-sourceCT scan-
ner (SOMATOM Force; Siemens Healthineers, Erlangen, Germany),
and a 256-slicemultidetector rowCT scanner (Brilliance iCT; Philips
Healthcare, Best, the Netherlands). The scan parameters and recon-
struction technique from each CT scanner are shown in Table 3.

Input Image Data
We first performed segmentation of the L1–L4 vertebra

semiautomatically using a bone extraction application from a ded-
icated workstation (Synapse Vincent; FujiMedical Systems,Minato,
Japan). For the training data sets, we manually cropped 3 sagittal
cross-sectional images at and close (5 mm gap) to the midvertebra
(5-mm thickness, field of view [FOV] 300 � 300 mm) from each
L1–L4 lumbar vertebra (Fig. 1). For the test and validation data sets,
we manually cropped 1 sagittal cross-sectional image (5-mm
thickness, FOV 300 � 300 mm) at midvertebra from each L1–
L4 lumbar vertebra.12 Finally, we obtained CT images from the
workstation in the Digital Images and Communications in Medi-
cine (DICOM) format. The DICOM format images were then
converted to JPEG images and resized to 256 � 256 pixels using
the Python 3.5.4 programming language (library; os, pydicom,
cv2, pandas, shutil).

BMD and TBS Prediction Using Deep Learning
With a CNN

We used deep learning with a CNN (ResNet50) to predict
BMD and the TBS. The preprocessed image datawere inputted into
the deep learning algorithm and augmented by image augmentation
layer. The schema of the deep learning algorithm (ResNet50) is il-
lustrated in Figure 2. The hyperparameters were as follows: the
number of epochs, 500; optimizer, Adam12; and minibatch size,
468 www.jcat.org
20 determined by GPU performance. We used to save the best
mechanism in the Neural Network Console and adopted the model
with the lowest validation loss. The image augmentation and Huber
loss function layers are active only in the training process. In the
training and validation process, 5-fold cross-validation was per-
formed. First, we excluded the test data from all data sets. The re-
maining data were divided randomly into 5 groups. The untrained
model was trained on 4 groups and validated one. Then, the proce-
dure was repeated 5 times to complete validation on all 5 groups.
Finally, we assessed the trained model performance in the test data
set. For vertebra-based analysis, BMD acquired by deep learning
with the CNN (BMDDL) and the TBS acquired by deep learning
with each vertebra's CNN (TBSDL) from test data sets were used.
In addition, for patient-based analysis, the mean of the L1–L4 lum-
bar vertebra was used as patient-based BMDDL and TBSDL.

The software to build the models was neural network console
version 1.9.7587.58782 (Sony Network Communications Inc,
Shinagawa, Japan). The whole process was run on a Core i7-6800K
central processing unit (Intel), 3.4 GHz with a GeForce GTX
1080Ti graphics processing unit (NVIDIA), and 32 GB of
random-access memory.

CT AttenuationMeasurements in the Test Data Set
For vertebra-based analysis, a diagnostic radiologist with 8 years

of experience independently placed a circular region of interest
(100–150 mm2) on the center of the L1–L4 lumbar vertebra and
assessed the CT attenuation (in HU). For patient-based analysis,
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.



TABLE 3. Scan and Reconstruction Parameters of CT Examinations

CT Scanner Vendor
Aquilion ONE (n = 173)
Canon Medical Systems

SOMATOM Force (n = 136)
Siemens Healthineers

Brilliance iCT (n = 93)
Philips Healthcare

Tube voltage, kVp 120 120 120
Reconstruction algorithm AIDR3D strong ADMIRE level 2 or 3 iDose 4 level5
Kernel for reconstruction FC03, FC18 Br40 B, C
Slice thickness, mm 0.5–1.0 0.6–1.0 0.67–1.0
Field of view, mm 349.2–497.7 350–500 350–500
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the mean of L1–L4 lumbar vertebral CT attenuation was used as
the patient-based CT attenuation of the lumbar vertebra.
Dual-Energy X-ray Absorptiometry
Dual-energy x-ray absorptiometry images were acquired

with a Lunar Prodigy (GE Healthcare, Little Chalfont, United
Kingdom). Bone mineral density and the % young adult mean
(%YAM) calculated for the lumbar vertebra (L1–L4) were recorded
from the reporting system. In addition, the TBS of the lumbar ver-
tebra (L1–L4) was calculated by TBS iNsight software (Version
3.0.3.0; Medimaps, Bordeaux, France), by a diagnostic radiologist
with 12 years of experience.9 The mean of the L1–L4 lumbar
vertebra was used as the patient-based BMD and TBS. Patients
were diagnosed with osteopenia (%YAM <80%) or osteoporosis
(%YAM <70%), respectively.3,4 Patients were also diagnosed
with bone microarchitecture impairment when the patient-based
TBS was ≤1.31.13

Statistical Analysis
We used the Shapiro-Wilk test to evaluate the normality of

data distributions. Continuous data are expressed as the mean
(SD) or median (25th–75th percentile), and assessed by Student t
test or Wilcoxon signed rank test, as appropriate. The categorical
FIGURE 1. Preprocessing of input images. We cropped sagittal cross-sec
pixels, FOV 300 � 300 mm). We cropped 3 sagittal cross-sectional imag
vertebra for the training data sets and 1 sagittal cross-sectional image at m
test data sets. Figure 1 can be viewed in color online at www.jcat.org.

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
variables are expressed as percentages and assessed by the χ2 test
(in the case of 3 groups, using the Bonferroni correction).

We used the Pearson correlation test to assess the correlations
between the BMDDL and BMD, TBSDL and TBS, CTattenuation
and BMD, or CTattenuation and TBS in each vertebra. The dif-
ferences between the BMDDL and BMD, TBSDL and TBS,
patient-based BMDDL and patient-based BMD, or patient-based
TBSDL and patient-based TBS were compared by the Student t
test. We also performed subgroup analysis (eg, CT vendor, sex,
age, body mass index [BMI], and time interval between DXA
and CT). In the subgroup analysis, we divided the test patients into
3 groups according to the CT vendor or 2 groups according to sex,
median age, median BMI, and the median time interval between
DXA and CT interval, respectively. In addition, multivariable lin-
ear regression analysis was performed to evaluate the factors af-
fecting on the BMD or TBS prediction with deep learning among
the subgroup.

We used receiver operating characteristic curve analyses to
evaluate the diagnostic performance of patient-based BMDDL

for osteopenia/osteoporosis and patient-based TBSDL for bone
microarchitecture impairment.14 We calculated the areas under
the curve (AUCs). Sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), false-predictive rate (FPR),
false-negative predictive rate (FNR), and accuracy were calculated
at a patient level.
tional images of each lumbar vertebra (5-mm thickness, 512 � 512
es at and close to the midvertebrae from each L1–L4 lumbar
idvertebrae from each L1–L4 lumbar vertebra for the validation and

www.jcat.org 469
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FIGURE 2. Schema of the deep leaning with CNN (ResNet50). We present the data shape (number, x-size, and y-size of image/feature map)
below the Input data, IA, Conv, and MP layer. We also exhibit the number of calculated value below the Affine and Huber Loss layer. CNN,
convolutional neural network; IA, image augmentation; Conv, convolution; MP, max pooling.
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We calculated the sample size for the test data set based on
BMD because there were few previous reports associated with
TBS predicted by deep learning. We assumed the standard devia-
tion of BMDwas 0.11 g/cm2,15 the statistical power was 0.8, and a
2-sided significance level was 0.05. The estimated BMD differ-
ence between DXA and deep learning was determined based on
previous research.16 Thirty-four patients and more were needed
to detect more than 0.11 g/cm2 absolute difference for BMDmea-
surements. We also calculated the statistical power of TBS predic-
tion based on our results and reported SD = 0.10 of TBS from a
previous study.9

In all tests, statistical significance was set at P < 0.05. Statis-
tical analyses were performed with JMP14 (SAS Institute Inc,
Cary, NC) and SPSS ver. 26 software (IBM SPSS, Chicago, IL).

RESULTS

DXA in the Test Data Set
The BMD values and TBS values were 1.02 (0.22) g/cm2 and

1.36 (0.13) per vertebra, respectively. The patient-based BMD and
TBS were 1.03 (0.20) g/cm2 and 1.36 (0.11) per patient, respec-
tively. Among the 52 patients, 17 and 4 patients were diagnosed
with osteopenia and osteoporosis, respectively. In addition, 15 of
the 52 patients were diagnosed as having bone microarchitecture
impairment.

Correlation and Comparison Between BMDDL and
BMD, and Between TBSDL and TBS in the
Per-Vertebra Analysis in the Test Data Set

The BMDDL, TBSDL, and CTattenuation were 1.07 (0.19) g/cm
2,

1.36 (0.09), and 132 (58) HU, respectively, in the test data set.
470 www.jcat.org
There was a significantly strong correlation between the
BMDDL and BMD (r = 0.81, P < 0.01) (Fig. 3A). There was a sig-
nificant moderate correlation between CT attenuation and BMD
(r = 0.60, P < 0.01) (Fig. 3B). In addition, there was a moderate
correlation between the TBSDL and TBS (r = 0.54, P < 0.01)
(Fig. 3C). The correlation between CT attenuation and the TBS
was weak (r = 0.25, P < 0.01) (Fig. 3D). BMDDL was significantly
higher than BMD (P = 0.03), and there was no significant differ-
ence between TBSDL and TBS (P = 0.81). The statistical power
of TBS at a vertebral level was 0.99.

In the subgroup analysis associated with CT vendor, sex, age,
BMI, and time between DXA and CT, there was a significantly
moderate-strong correlation between the BMDDL and BMD in all
subgroups: vendor A (r = 0.83, P < 0.001), vendor B (r = 0.84,
P < 0.001), and vendor C (r = 0.65, P < 0.01); males (r = 0.91,
P < 0.001) and females (r = 0.78, P < 0.001); young (r = 0.72,
P < 0.001) and seniors (r = 0.83, P < 0.001); low BMI (r = 0.80,
P < 0.001) and high BMI (r = 0.81, P < 0.001); short time interval
(r = 0.81, P < 0.001) and long time interval (r = 0.80, P < 0.001),
respectively. In addition, there was a significant moderate correla-
tion between the TBSDL and TBS in all subgroups: vendor A
(r = 0.46, P < 0.001), vendor B (r = 0.57, P < 0.001), and vendor
C (r = 0.53, P < 0.01); males (r = 0.62, P < 0.001) and females
(r = 0.52, P < 0.001); young (r = 0.54, P < 0.001) and seniors
(r = 0.47, P < 0.001); low BMI (r = 0.68, P < 0.001) and high
BMI (r = 0.45, P < 0.001); short time interval (r = 0.53,
P < 0.001) and long time interval (r = 0.53,P < 0.001), respectively.

The BMDDL, BMD, TBSDL, and TBS in the subgroup anal-
ysis were shown in Table 4. There were significant differences be-
tween the BMDDL and BMD in vendor C, female, low BMI, and
short time interval. There were no significant differences between
the TBSDL and TBS in all subgroups. In the multivariable linear
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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regression analysis, CT vendor and BMI were significant sub-
group factors affecting the BMD prediction with deep learning,
whereas there was no significant subgroup factor affecting the
TBS prediction with deep learning (Table 5).

Diagnostic Performance of Patient-Based BMDDL
and TBSDL Per-Patient Analysis in the Test Data Set

The patient-based BMDDL, patient-based TBSDL, and
patient-based CT attenuation were 1.07 (0.17) g/cm2, 1.36 (0.05),
and 132 (56) HU, respectively, in the test data set. All of them
showed normal distribution. The AUCs of patient-based BMDDL

for identifying osteopenia and osteoporosis were 0.921 (95%
confidence interval [CI], 0.793–0.973) and 0.969 (95% CI,
0.872–0.993), respectively. The sensitivity, specificity, PPV, NPV,
FPR, NPR, and accuracy of patient-based BMDDL for identifying
osteopenia and osteoporosis were 93%, 90%, 77%, 97%, 11%,
7%, and 90%, and 100%, 94%, 57%, 100%, 6%, 0%, and 94%, re-
spectively. In addition, the AUC of patient-based TBSDL for identi-
fying patients with bone microarchitecture impairment was 0.768
(95% CI, 0.585–0.886). The sensitivity, specificity, PPV, NPV,
FIGURE 3. Correlations between BMDDL and BMD (A), CT attenuation a
test data sets. DL indicates deep learning–predicted. Figure 3 can be vie

© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
FPR, NPR, and accuracy of patient-based TBSDL for identifying
patients with bone microarchitecture impairment were 73%, 73%,
52%, 87%, 27%, 27%, and 73%, respectively. There were no sig-
nificant differences between patient-based BMDDL and patient-based
BMD (P = 0.26), or between patient-based TBSDL and patient-based
TBS (P = 0.88). The statistical power of TBS at a patient level
was 0.98.

DISCUSSION
In this study, we found a strong correlation between BMDDL

andBMD, and amoderate correlation between TBSDL and TBS.We
showed that deep learning with CNN could identify patients with
osteopenia/osteoporosis or bone microarchitecture impairment.

The present study showed that deep learningwith CNN allowed
accurate prediction of BMD from abdominal CT images. Computed
tomography attenuation also presented a significant correlation
with BMD, but the correlation with BMD was weaker than that
with BMDDL. Several previous studies also reported that deep
learning with a CNN could predict BMD from noncontrast LI–
L4 CT images, but the deep learning algorithms in those studies
nd BMD (B), TBSDL and TBS (C), and CT attenuation and TBS (D) in
wed in color online at www.jcat.org.
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TABLE 4. Subgroup Results of BMD and TBS Prediction
Per-Vertebra Analysis

BMD BMDDL P

CT vendor
Vendor A 1.05 (0.19) 1.03 (0.24) 0.47
Vendor B 1.21 (0.20) 1.19 (0.20) 0.60
Vendor C 1.01 (0.16) 0.93 (0.15) <0.01*

Sex
Male 1.10 (0.21) 1.06 (0.22) 0.36
Female 1.06 (0.19) 1.02 (0.22) 0.04*

Age
Young 1.13 (0.18) 1.09 (0.18) 0.13
Senior 1.00 (0.20) 0.95 (0.23) 0.07

Body mass index
Low 1.05 (0.21) 0.97 (0.23) 0.01*
High 1.09 (0.18) 1.08 (0.19) 0.56

Time interval
Short 1.09 (0.19) 1.03 (0.21) 0.04*
Long 1.05 (0.20) 1.02 (0.22) 0.26

TBS TBSDL P

CT vendor
Vendor A 1.35 (0.09) 1.36 (0.14) 0.81
Vendor B 1.40 (0.09) 1.43 (0.13) 0.21
Vendor C 1.35 (0.09) 1.32 (0.12) 0.10

Sex
Male 1.36 (0.09) 1.35 (0.12) 0.77
Female 1.36 (0.09) 1.36 (0.14) 0.91

Age
Young 1.38 (0.09) 1.39 (0.13) 0.45
Senior 1.34 (0.09) 1.32 (0.13) 0.25

Body mass index
Low 1.36 (0.09) 1.35 (0.11) 0.58
High 1.36 (0.09) 1.37 (0.15) 0.89

Time interval
Short 1.37 (0.09) 1.36 (0.13) 0.38
Long 1.35 (0.09) 1.36 (0.14) 0.59

Continuous data are expressed as the mean (SD) and assessed by Stu-
dent t test.

*Statistical significance was determined at P < 0.05 between the BMD
and BMDDL.

BMDDL, BMD acquired by deep learning with the CNN; TBSDL, TBS
acquired by deep learning with the CNN.

TABLE 5. Multivariable Linear Regression Analysis for
Evaluating Factors Associated With BMD or TBS Prediction With
Deep Learning

Subgroup factors P

BMD
CT vendor 0.03*
Sex 0.50
Age 0.36
Body mass index <0.001*
Time interval 0.15

TBS
CT vendor 0.15
Sex 0.99
Age 0.07
Body mass index 0.53
Time interval 0.13

*Statistical significance was determined at P < 0.05.
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were trained using a single-vendor CT scanner data set.11,12 Re-
cently, it was recommended that multivendor images should be
used in each step of the deep learning algorithm development to
prevent overfitting. Vendor-specific deep learning algorithms are
much less useful for clinical situations than multivendor adaptable
deep learning algorithms.17 In the present study, conventional CT
images acquired by multivendor scanners were used in all phases
of the deep learning algorithm evaluation. Our results showed the
robustness of BMD prediction using deep learning with a CNN
even in a data set acquired with multivendor CT scanners. In the
bone microarchitecture assessment, the TBS assessed clinically
by DXAwas used for identifying bone microarchitecture impair-
ment.3,6,7 Deep learning with a CNN allowed prediction of
the TBS from abdominal CT images, whereas CT attenuation
472 www.jcat.org
exhibited aweak correlation with the TBS in the present study. Pre-
vious studies also showed that bone microarchitecture could be
evaluated using CT images and structural/textural analysis.6,18,19

We speculate that deep learning with CNN might predict bone
microarchitecture concerning structural and textural characteristics,
which was difficult to be evaluated by CTattenuation. However, the
TBSDL did not match fully with the TBS assessed by DXA. We
speculated that this was because the spatial resolution of CT images
was not sufficient for the accurate prediction of the TBS.7

The present study showed that the BMDDL tended to be
slightly higher than BMD. In the subgroup analysis, there were sig-
nificant differences between the BMDDL and BMD in CT vendor,
sex, BMI, and time interval. Among them, CT vendor and BMI sig-
nificantly affected BMD prediction according to the multivariable
linear regression analysis. In regards to the CT vendor, we specu-
lated that the differences in effective energies and image noise due
to the scan parameters and iterative reconstruction methods among
CT vendors may have affected the prediction of BMD with deep
learning.20–22 A larger number of training data set was needed to fur-
ther improve the accuracy of BMD prediction with deep learning in
multivendor CT data set.23 In regards to the BMI, we speculated that
the differences in soft tissue information between CT and DXA. In
the present study, CT contained only bone information from the
cropped lumbar vertebra, whereas DXA contained information on
bone, soft tissue, aorta, and other organs.11,24 In addition, the dose
adjustment mechanism based on body size may have affected the
prediction of BMD with deep learning. Computed tomography
had an autoexposure control mechanism that adjusted dose modula-
tion based on body size,25 whereas DXA did not have a dosemod-
ulationmechanism. Although these factors might affect BMD pre-
diction, BMDDL presented high accuracy in identifying osteopenia/
osteoporosis in this study, as shown in previous reports,11,12 and it
could be feasible to use BMDDL in clinical practice.

In addition to BMD, bone microarchitecture is also very im-
portant, as more than half of fragility fractures occur despite BMD
lying within the normal range.3,5,8,9,13 The TBS is an indirect mea-
surement of bonemicroarchitecture, which is calculated by texture
analysis fromDXA images. Previous reports showed that the TBS
correlated significantly with the 3D bone microarchitecture pa-
rameters in human cadavers and that the TBS could independently
predict fragility fracture risk fromBMDor Fracture Risk Assessment
Tool.8,9,13 The present study showed that no significant difference
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc.
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exists between the TBSDL and TBS. According to the subgroup
analysis, CT vendor, sex, age, BMI, and the time interval between
DXA and CTmight have no significant effect on the TBS predic-
tion with deep learning. Although we could not calculate the
adequate sample size associated with TBS prediction with deep
learning due to the limits of the previous reports, the statistical
power was high at both vertebral and patient levels. Moreover,
the TBSDL derived from conventional CT images could identify
bone microarchitecture impairment. The predictability of bone
microarchitecture impairment by deep learning with a CNN will
be improved by further developments in CT technology (eg, spatial
resolution) in the future.

There were several limitations in the present study. First, this
was a single-center retrospective cross-sectional study, and the
number of the data set was relatively small. Recently, external val-
idation is preferable to apply deep learning models in the real
world, when possible.22 Unfortunately, this study did not include
external validation. Further prospective multicenter studies with
large data sets and external validation are needed. Second, we are
concerned that the manual part in the segmentation process might
impair the reproducibility of the cropped vertebral images and the
accuracy of the BMD and TBS prediction with deep learning in
the present study. Recently, U-net could automatically segment
and label vertebrae,11 which would help us to improve our deep
learning algorithm. Third, the effect of contrast media is not known.
The present study did not include enhanced CT, to avoid the change
in the CTattenuation of the lumbar vertebra. Fourth, the differences
between other deep learning algorithms have not been investigated.
AlexNet, GoogLeNet, and ResNet are often used as CNN models
for diagnostic imaging analysis. Herein, we used ResNet50 because
it exhibited the best diagnostic performance in a certain task.26,27

Fifth, the time interval between the DXA and CT did not appear
to match between the test data set of 87 (14–185) days and the train-
ing and validation data set of 49 (9–121) days. Although this differ-
ence was not statistically significant, we could not rule out the pos-
sibility of affecting the performance of the prediction of BMD and
TBS with deep learning in this study. Finally, we did not evaluate
the performance of deep learning with a CNN in the prediction of
fragility fractures. The feasibility of BMDDL and TBSDL derived
from conventional CT images for predicting fragility fractures
should be evaluated in further studies.

In conclusion, deep learning with a CNN could predict both
BMD and the TBS using conventional CT images acquired by
multivendor scanners. The BMDDL and TBSDL derived from con-
ventional CT images could identify patients who should undergo
DXA, which could be a gatekeeper tool for detecting latent
osteoporosis/osteopenia or bone microarchitecture impairment.
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